Human Bone Marrow Mesenchymal Stem Cell Behaviors on PCL/Gelatin Nanofibrous Scaffolds Modified with A Collagen IV-Derived RGD-Containing Peptide
نویسندگان
چکیده
OBJECTIVE We introduce an RGD (Arg-Gly-Asp)-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties. MATERIALS AND METHODS In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel) hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An iodine-modified phenylalanine was introduced in the peptide to track the immobilization process. Native and modified scaffolds were characterized with scanning electronmicroscopy (SEM) and fourier transform infrared spectroscopy (FTIR). We studied the osteogenic and adipogenic differentiation potential of human bone marrow-derived mesenchymal stem cells (hBMSCs). In addition, cell adhesion and proliferation behaviors of hBMSCs on native and peptide modified scaffolds were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4',6-diamidino-2-phenylindole (DAPI) staining, and the results compared with tissue culture plate, as the control. RESULTS FTIR results showed that the peptide successfully immobilized on the scaffold.MTT assay and DAPI staining results indicated that peptide immobilization had a dramatic effect on cell adhesion and proliferation. CONCLUSION This peptide modified nanofibrous scaffold can be a promising biomaterial for tissue engineering and regenerative medicine with the use of hBMSCs.
منابع مشابه
Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells
Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...
متن کاملDevelopment of a Novel Three-Dimensional Biocompatible Nanofibrous Scaffold for the Expansion and Hepatogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells
In this present study, we examined the differentiation potential of human bone marrow derived mesenchymal stem cells (hBMSCs) into hepatocytes on a three-dimentional (3D) nanofibrous scaffold formed by Poly (ε-caprolactone) (PCL), collagen and polyethersulfone (PES). The nanofiber was prepared by the electrospining technique. HBMSCs were isolated using combining gradient density centrifugation ...
متن کاملEffect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering
Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...
متن کاملNanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells
Inadequate cell numbers in culture is one of the hurdles currently delaying the application of human embryonic stem cells (hESCs) for transplantation therapy. Nanofibrous scaffolds have been effectively used to expand and differentiate non-colony forming multipotent mesenchymal stem cells (MSC) for the repair of tissues or organs. In the present study, we evaluated the influence of nanofibrous ...
متن کاملDifferentiation of Human Mesenchymal Stem Cell into Chonderocyte Like Cells 3D Poly Lactic Acid Glycosaminoglycan (PCL-GAG) Nano Fibre Scaffold
Introduction: Failure of human body tissue and organs is believed to be one of the most important health problems all over the world. The great challenge for tissue engineers is to optimize suitable systems to separate, proliferate and differentiate the cells so that they can set out to create tissue by a harmonic 3-D growth. Therefore, the tissue engineers must provide an environment like the ...
متن کامل